A New View of Pterosaur Feeding Habits

نویسنده

  • Liza Gross
چکیده

1633 Few things capture a child’s imagination like the age of dinosaurs, and it’s no wonder. The dinosaur seems an improbable beast, yet the fossil record tells us that vegetarian sauropods longer than a football fi eld once lumbered alongside tractor-trailer–sized predatory carnosaurs. Above these behemoths soared the reptilian pterosaurs, some propelled by wings spanning more than 12 meters. Although pterosaurs are not dinosaurs, the two groups may well share a common ancestor on the reptilian tree. The size and body plan of these long-extinct animals can be reliably reconstructed from the fossil record, as can the dates of their time on Earth. But fossils only rarely provide direct evidence of behavior and ecology, freeing children to imagine whatever wild scenarios they please and forcing researchers to develop innovative approaches to recreate the ecology of an ancient era. One way scientists gain insight into ecological traits of extinct animals is by comparing fossilized morphological features to those of living animals. Such studies have suggested that some pterosaurs may have fed like modernday “skimmers,” a rarifi ed group of shorebirds, belonging to the genera Rynchops , that fl y along the surface of still bodies of water scooping up small fi sh and crustaceans with their submerged lower jaw. Structural similarities between pterosaur and Rynchops skulls and jaws suggested to some paleontologists that certain pterosaur taxa were anatomically suited for skimming. But the fossilized jaws of putative pterosaur skimmers also bear features that undercut this hypothesis, including pointed jaw tips that likely couldn’t defl ect water, and thus reduce energy costs, the way the blunted jaw tips of Rynchops presumably do. In a new study, Stuart Humphries et al. report that biomechanical analyses offer valuable insights into the feasibility of pterosaur skimming. By combining experiments using life-size models of jaws from postulated pterosaur and model skimmers with hydrodynamic and aerodynamic modeling, the researchers show that skimming requires more energy than giant reptilian fl iers were likely able to supply. Though considered reptiles, pterosaurs appear to lack scales and were, in fact, covered in short fur. Their wings, like those of bats, comprised a sophisticated fl ight membrane supported by elongate wing bones. Their extremely light, hollow skeletons were presumably fi lled with air, allowing these gigantic animals to take to the skies, which they did as far back as 230 million years ago. Guided by specimens and data on jaw morphology, the researchers built model bills of a Rynchops subspecies ( R. niger cinerascens ), a suggested pterosaur skimmer ( Thalassodromeus sethi ), and a presumed nonskimming, smaller pterosaur ( Tupuxuara sp.). The models were suspended from a trolley and towed along a water-fi lled trough at speeds documented for Rynchops skimmers. The models were rigged with instruments designed to measure strain—the physical response to an applied force like water—which was used to calculate the drag force acting on the models as they “skimmed” the water. In the skimming experiments, the two pterosaur model bills experienced nearly ten times as much drag as the Rynchops model at the same depth. To describe the process in mathematical terms, the researchers developed a fl uid dynamic model incorporating drag forces that would cause energy loss as the pterosaur or bird worked against gravity to displace water with its jaw. They validated the model by showing that the drag measurements produced by the Rynchops and pterosaur model bills matched the estimates derived from the principles of fl uid dynamics. The researchers could then use this model to estimate drag costs and potential skimming capability of other reputed skimming pterosaurs without having to make casts of their bills. To calculate the energetic costs of skimming, the researchers compared the estimated costs of powered fl ight, including their estimated costs of hydrodynamic drag, to estimates of available metabolic power for self-propelled fl ight. (Metabolic power estimates are based on estimates of body mass and wingspan.) Skimming carried “considerably higher” fl ight costs for pterosaurs than for modern skimmers. But skimming is also an energetically costly foraging strategy for Rynchops , the researchers discovered, because their hydrodynamic drag costs are three times higher than previously estimated. Even so, the birds possess the metabolic muscle to sustain skimming. It’s unlikely, however, that pterosaurs could have mustered the power required to offset the energetic costs of skimming. (Interestingly, the researchers’ theoretical models suggest that Tupuxuara sp., the smaller pterosaur considered a nonskimmer based on its anatomy, could theoretically meet the energy demands of skimming, though it would have to spend half of its fl ight energy budget on drag.) These results show that the bill is subjected to substantially greater hydrodynamic drag than previously appreciated, challenging the common assumption that drag costs pale in comparison to aerodynamic costs of fl ight. These high costs explain why skimming is habitually practiced by only three existing bird species, all Rynchops —and why it’s very unlikely that ancient pterosaurs fed by skimming. What’s A New View of Pterosaur Feeding Habits

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Crested Pterosaur from the Early Cretaceous of Spain: The First European Tapejarid (Pterodactyloidea: Azhdarchoidea)

BACKGROUND The Tapejaridae is a group of unusual toothless pterosaurs characterized by bizarre cranial crests. From a paleoecological point of view, frugivorous feeding habits have often been suggested for one of its included clades, the Tapejarinae. So far, the presence of these intriguing flying reptiles has been unambiguously documented from Early Cretaceous sites in China and Brazil, where ...

متن کامل

Earliest filter-feeding pterosaur from the Jurassic of China and ecological evolution of Pterodactyloidea

Pterosaurs were a unique clade of flying reptiles that were contemporaries of dinosaurs in Mesozoic ecosystems. The Pterodactyloidea as the most species-diverse group of pterosaurs dominated the sky during Cretaceous time, but earlier phases of their evolution remain poorly known. Here, we describe a 160 Ma filter-feeding pterosaur from western Liaoning, China, representing the geologically old...

متن کامل

An Early Cretaceous pterosaur with an unusual mandibular crest from China and a potential novel feeding strategy

The Aptian Jiufotang Formation of northeast China is a Konservat Lagerstätte particularly rich in pterosaurs, notably azhdarchoids. Here we describe a new genus and species of toothed pteranodontoid pterosaur, Ikrandraco avatar gen. et sp. nov., based on two laterally flattened specimens. Ikrandraco avatar is diagnosed by a suite of features, including a very low and elongate skull, strongly in...

متن کامل

An Unusual Pterosaur Specimen (Pterodactyloidea, ?Azhdarchoidea) from the Early Cretaceous Romualdo Formation of Brazil, and the Evolution of the Pterodactyloid Palate

A new and unusual specimen of a probable azhdarchoid pterosaur is described for the Early Cretaceous (Albian) Romualdo Formation of Brazil. The specimen consists of a palate that, although fragmentary, has a unique morphology differing from all other known pterosaurs with preservation of palatal elements. The new specimen probably indicates the presence of a yet undescribed pterodactyloid taxon...

متن کامل

Age determination and feeding habits of Nemipterus japonicus (Bloch, 1791) in the northern Oman Sea

Age determination and feeding habits of the Japanese threadfin bream, Nemipterus japonicus, was carried out in the northern Oman Sea (Chabahar area), based on 212 specimens collected between September 2009 and May 2010. The minimum and maximum fork length and body weight were measured as 145, 258 mm and 55.31, 288.12 g. The relationship between Body Weight (BW) and Fork Length (FL) for all indi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PLoS Biology

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2007